# The Structures of Two Nitro-Substituted Phenoxathiins: 1-Nitrophenoxathiin and 9-Nitro-1-azaphenoxathiin

BY M. B. HOSSAIN, C. A. DWIGGINS AND DICK VAN DER HELM

University of Oklahoma, Chemistry Department, Norman, Oklahoma 73019, USA

P. K. SEN GUPTA

Memphis State University, Geology Department, Memphis, Tennessee 38152, USA

AND JAMES C. TURLEY AND GARY E. MARTIN

University of Houston, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Houston, Texas 77004, USA

(Received 5 February 1981; accepted 30 September 1981)

## Abstract

The structures of two nitro-substituted phenoxathiin derivatives have been determined by single-crystal X-ray diffraction. 1-Nitrophenoxathiin,  $C_{12}H_7NO_3S$ , is monoclinic,  $P2_1$ , with a = 13.864 (3), b = 7.160 (2),  $c = 10.950 (2) \text{ Å}, \beta = 111.20 (3)^{\circ} \text{ at } 138 \text{ K and } Z = 4.$ The final R factor is 0.033 for 2250 diffractometer data measured at 138 (2) K using Cu  $K\bar{\alpha}$  radiation. The two molecules in the asymmetric unit are distinctly different in their folding about the central S-O vector. The dihedral angle between the non-central rings is 163.8° in molecule A, and  $145.7^{\circ}$  in molecule B. In molecule A, the orientation of the nitro group indicates an S…O non-bonding intramolecular interaction (2.606 Å), while in molecule B the nitro group is rotated out of the plane of the benzene ring creating a less favorable situation for such an interaction. 9-Nitro-1-azaphenoxathiin,  $C_{11}H_6N_2O_3S$ , is orthorhombic,  $Pbc2_1$ , with a = 3.799(1), b = 19.940(4), c =25.874 (8) Å at 138 K and Z = 8. The final R factor is 0.082 for 2057 diffractometer data measured at 138 (2) K using Cu  $K\bar{\alpha}$  radiation. Both of the molecules in the asymmetric unit are nearly planar; the dihedral angle between the non-central rings is 178.2° for molecule A and  $177 \cdot 1^{\circ}$  for molecule B. In both molecules, there are indications of non-bonding  $S \cdots O$ interactions (S···O distances of 2.590 and 2.570 Å) which may help stabilize the near-planar conformations. However, the planarity of the tricyclic system in the present structure may primarily be due to the aza substitution at the 1-position.

### Introduction

The compounds 1-nitrophenoxathiin (Turley & Martin, 1981) and 9-nitro-1-azaphenoxathiin (Martin & Turley,

0567-7408/82/030881-08\$01.00

1978) were recently synthesized. Both compounds are derivatives of phenoxathiin, a hetero tricyclic system having a folded molecular geometry quite similar to a number of pharmacologically active phenothiazines. Early investigators concluded that the differences in pharmacological activity among the various phenothiazine derivatives were attributable either to the dihedral angle between the non-central rings or to the change in substituent location or both. Recent work (Martin, Korp, Turley & Bernal, 1978) on some aza-substituted phenoxathiins demonstrated that active derivatives have approximately the same dihedral angle as exhibited by their inactive counterparts. It was therefore suggested that activity is related more to the substituent location in the parent molecule than to the difference in dihedral angle. The effect of substitution on the molecular geometry (dihedral angle in particular) is also of interest.

The structure determinations of the two nitrosubstituted phenoxathiin derivatives are part of a continuing study on the effect of substitution pattern on the geometry of the parent molecule, phenoxathiin. It is expected that such studies will provide better understanding of the correlation between the pharmacological activity and molecular configuration and structure.

## Experimental

Crystals of both 1-nitrophenoxathiin (NPX) and 9nitro-1-azaphenoxathiin (NAPX) are bright-red, prismatic needles. The unit-cell dimensions and intensity data for both compounds were obtained at 138 (2) K using a Nonius CAD-4 counter diffractometer controlled by a PDP8/e computer and fitted with a low-temperature device.

© 1982 International Union of Crystallography

| Table                     | 1. | Crystal | data | of | 1-nitrophenoxathiin | and |  |  |
|---------------------------|----|---------|------|----|---------------------|-----|--|--|
| 9-nitro-1-azaphenoxathiin |    |         |      |    |                     |     |  |  |

|                                                                                                                                        | 1-Nitrophenoxathiin                                                          |                                                                                 | 9-Nitro-1-azaphenoxathiin                                                                                                     |                                                                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| Formula<br><i>M</i> ,<br>Space group                                                                                                   | C <sub>12</sub> H <sub>7</sub> NO <sub>3</sub> S<br>245-3<br>P2 <sub>1</sub> |                                                                                 | C <sub>11</sub> H <sub>6</sub> N <sub>2</sub> O <sub>3</sub> S<br>246·2<br><i>Pbc2</i> 1                                      |                                                                    |  |
| Cell parameters<br>$a(\dot{A})$<br>$b(\dot{A})$<br>$c(\dot{A})$<br>$\beta(^{\circ})$<br>$V(\dot{A}^{3})$<br>Z<br>$\rho_{c}(Mg m^{-3})$ | 138 K<br>13.864 (3)<br>7.160 (2)<br>10.950 (2)<br>111.20 (3)<br>1013.7<br>4  | 293 K<br>13·949 (2)<br>7·305 (2)<br>10·990 (1)<br>111·09 (1)<br>1044·8<br>1·559 | 138 K<br>3·799 (1)<br>19·940 (4)<br>25·874 (8)<br>1960·0<br>8                                                                 | 293 K<br>3.900 (2)<br>19.924 (7)<br>26.000 (11)<br>2020.3<br>1.618 |  |
| $\rho_m (Mg m^{-3})$<br>Radiation                                                                                                      | Cu Ka, (cell) (                                                              | 1.564<br>$\lambda = 1.54051 \text{ Å}$ )                                        | Cu Ka <sub>1</sub> (cell) (λ                                                                                                  | 1.610 = 1.54051  Å                                                 |  |
| Crystal dimensions                                                                                                                     | Cu Kā (data) (<br>0.60 × 0.19 ×                                              | $\lambda = 1.54178 \text{ Å}$ )<br>0.05                                         | $\frac{\operatorname{Cu} K\overline{a} (\operatorname{data})}{0.19 \times 0.06 \times 0.06 \times 0.06}$                      | . = 1·54178Å)<br>0·03                                              |  |
| $\mu$ (Cu Ka) (mm <sup>-1</sup> )<br>Scan type<br>Scan width (°)<br>Aperture width (mm)<br>Crystal-counter                             | 2.74<br>$\theta$ -2 $\theta$<br>(0.90 + 0.15 t<br>(3.5 + 0.86 ta<br>173      | an θ)<br>n θ)                                                                   | $2 \cdot 87$<br>$\theta - 2\theta$<br>$(1 \cdot 10 + 0 \cdot 14 \text{ ta})$<br>$(4 \cdot 5 + 0 \cdot 86 \text{ tar})$<br>173 | $(n \ 	heta)$<br>$( \ 	heta)$                                      |  |
| distance (mm)<br>Maximum counting<br>time (s)                                                                                          | 40                                                                           |                                                                                 | 60                                                                                                                            |                                                                    |  |
| Data range (°)<br>Unique data<br>Unique data with<br>$I > 2\sigma(I)$                                                                  | $2\theta \le 150$ $2250$ $2189$                                              |                                                                                 | $2\theta \le 150$ $2057$ $1704$                                                                                               |                                                                    |  |

Unit-cell parameters were determined by leastsquares fit to  $+2\theta$  and  $-2\theta$  values of a number of reflections (48 for NPX, and 16 for NAPX) measured at 138 and 293 K, using Cu  $K\alpha_1$  ( $\lambda = 1.54051$  Å) radiation. The space group in each case was determined from the systematic absences (0k0, k = 2n + 1), for NPX, and 0kl, k = 2n + 1, h0l, l = 2n + 1, for NAPX). The density for each compound was measured by flotation in an aqueous AgNO<sub>3</sub> solution. For both compounds, intensities of all reflections with  $2\theta \le 150^\circ$ were measured at low temperature using Cu  $K\overline{a}$ radiation and applying  $\theta$ -2 $\theta$  scan techniques. The maximum change in the intensity of the monitor reflection was less than 4% for both compounds. Crystal data and relevant parameters for intensity measurements are given in Table 1.

The data were scaled by means of standard reflections and Lorentz and polarization corrections were applied in the usual way. In each case, a Gaussian method (Coppens, Leiserowitz & Rabinovich, 1965) was employed to make the absorption correction by using 216 sampling points. Each structure amplitude was assigned an experimental weight,  $w_F = 1/\sigma_F^2$ , where  $\sigma_F$  was obtained from the counting statistics (Ealick & van der Helm, 1975).

#### Structure determination and refinement

## 1-Nitrophenoxathiin

The positions of the two S atoms were determined from a three-dimensional Patterson map. All 32

non-hydrogen atoms in the asymmetric unit (two molecules) were obtained by successive difference Fourier syntheses. The least-squares refinement of the structure was carried out in stages, using isotropic and then anisotropic thermal parameters. All 14 H atoms were located from a difference Fourier map and were refined isotropically. The final R factor is 0.031 for 2173 reflections included in the least-squares calculations, and 0.033 for all 2250 reflections.

## 9-Nitro-1-azaphenoxathiin

х

The structure was solved by direct methods using the program MULTAN (Germain, Main & Woolfson, 1971). All non-hydrogen atoms of the two molecules in the asymmetric unit were refined first isotropically, then with anisotropic thermal parameters. All H atoms

Table 2. Positional parameters  $(\times 10^4)$  and equivalent isotropic thermal parameters  $(Å^2 \times 10^4)$  of nonhydrogen atoms in 1-nitrophenoxathiin

Calculated standard deviations for the last digit are in parentheses.

$$U_{eq} = (\frac{1}{6}\pi^2) \sum_i \sum_j b_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$$

U

|            |             | 2           | -         | ~ eq     |
|------------|-------------|-------------|-----------|----------|
| Molecule 2 | 4           |             |           |          |
| S          | 4283-5 (4)  | -72.0 (12)  | 472.6 (6) | 229 (3)  |
| C(1)       | 6017 (2)    | -585 (4)    | 2734 (2)  | 203 (11) |
| C(2)       | 7057 (2)    | -779 (4)    | 3460 (2)  | 237 (11  |
| C(3)       | 7757 (2)    | -735 (5)    | 2823 (3)  | 257 (11  |
| C(4)       | 7394 (2)    | -495 (4)    | 1473 (3)  | 235 (11  |
| C(4a)      | 6354 (2)    | -285 (4)    | 767 (2)   | 201 (10  |
| O(5)       | 6125-5 (13) | 58 (3)      | -547 (2)  | 260 (9)  |
| C(5a)      | 5145 (2)    | -257 (4)    | -1463 (2) | 211 (10) |
| C(6)       | 5073 (2)    | -448 (4)    | -2751 (2) | 244 (11  |
| C(7)       | 4111 (2)    | -716 (5)    | -3733 (2) | 263 (11  |
| C(8)       | 3227 (2)    | -825 (5)    | -3412 (2) | 252 (11) |
| C(9)       | 3309 (2)    | -639 (4)    | -2110 (2) | 225 (11) |
| C(9a)      | 4266 (2)    | -337 (4)    | -1135 (2) | 197 (10) |
| C(10a)     | 5610 (2)    | -327 (4)    | 1365 (2)  | 186 (10) |
| N          | 5324 (2)    | -616 (4)    | 3474 (2)  | 247 (10) |
| O(1)       | 4409-2 (14) | -268 (4)    | 2902 (2)  | 330 (10) |
| O(2)       | 5693 (2)    | -993 (5)    | 4644 (2)  | 414 (11  |
| Molecule I | B           |             |           |          |
| S          | -1121.7 (4) | 3418.2 (12) | 664.8 (6) | 208 (2)  |
| C(1)       | 578 (2)     | 2340 (4)    | 2852 (2)  | 218 (11  |
| C(2)       | 1593 (2)    | 1815 (4)    | 3505 (3)  | 255 (11  |
| C(3)       | 2271 (2)    | 1850 (4)    | 2833 (3)  | 264 (11  |
| C(4)       | 1913 (2)    | 2380 (4)    | 1527 (3)  | 248 (11  |
| C(4a)      | 893 (2)     | 2861 (4)    | 886 (2)   | 190 (10  |
| O(5)       | 617.5 (13)  | 3447 (3)    | -399 (2)  | 223 (7)  |
| C(5a)      | -331(2)     | 2861 (4)    | -1280(2)  | 201 (10) |
| C(6)       | -400 (2)    | 2413 (4)    | -2535(3)  | 235 (11) |
| C(7)       | -1353 (2)   | 1913 (4)    | -3460 (2) | 251 (11) |
| C(8)       | -2226 (2)   | 1835 (4)    | -3116 (2) | 240 (11) |
| C(9)       | -2146 (2)   | 2261 (4)    | -1842 (3) | 228 (11) |
| C(9a)      | -1195 (2)   | 2790 (4)    | -923 (2)  | 186 (10) |
| C(10a)     | 185 (2)     | 2857 (4)    | 1532 (2)  | 191 (10) |
| N          | -97 (2)     | 2376 (4)    | 3618 (2)  | 278 (11) |
| O(1)       | -882.4 (14) | 3335 (4)    | 3211 (2)  | 324 (9)  |
| O(2)       | 170 (2)     | 1474 (5)    | 4642 (2)  | 455 (13) |
|            |             |             |           |          |

except for five were obtained from a difference map. The refinement converged to an R factor of 0.068 for 1704 reflections that were included in the least-squares calculations and 0.082 for all 2057 reflections.

Refinements for both structures were carried out by using a block-diagonal least-squares program (Ahmed, 1966) in which the quantity  $\sum w_F (|kF_o| - |F_c|)^2$  was minimized. For each structure, the anomalousdispersion effect by the S atom was included, and the polarity of the structure was ascertained by applying the  $\mathscr{R}$  method of Hamilton (1965). The maximum parameter shift in the final cycle of least-squares refinement was less than 25% of the corresponding standard deviation in NPX and less than 30% for NAPX. The scattering factors for O, C, N and S atoms and f' and f'' values for S were taken from International Tables for X-ray Crystallography (1974). H-atom scattering factors were taken from Stewart, Davidson & Simpson (1965).

## Table 3. Positional parameters $(\times 10^4)$ and equivalent isotropic thermal parameters $(Å^2)$ of non-hydrogen atoms for 9-nitro-1-azaphenoxathiin

Estimated standard deviations for the last digits are in parentheses.

. .

|              | x          | У          | Z          | $U_{eq}$   |
|--------------|------------|------------|------------|------------|
| Molecul      | e A        |            |            |            |
| S            | 7692 (6)   | 7885.5 (9) | 327.0 (7)  | 0.0292 (8) |
| O(5)         | 7931 (17)  | 8012 (3)   | 1548 (2)   | 0.037 (3)  |
| <b>O</b> (1) | 5476 (18)  | 6861 (3)   | -194 (2)   | 0.040 (3)  |
| O(2)         | 2085 (19)  | 6042 (3)   | 44 (2)     | 0.047 (4)  |
| N(1)         | 10442 (20) | 9074 (3)   | 457 (2)    | 0.034 (4)  |
| N(2)         | 4015 (20)  | 6522 (3)   | 133 (2)    | 0.032 (4)  |
| C(1a)        | 9194 (21)  | 8551 (4)   | 723 (2)    | 0.029 (4)  |
| C(2)         | 11708 (23) | 9599 (4)   | 711 (3)    | 0.033 (4)  |
| C(3)         | 11816 (24) | 9622 (4)   | 1251 (3)   | 0.036 (4)  |
| C(4)         | 10502 (25) | 9076 (4)   | 1525 (3)   | 0.034 (4)  |
| C(4a)        | 9189 (21)  | 8535 (4)   | 1262 (2)   | 0.029 (4)  |
| C(5a)        | 6479 (20)  | 7451 (4)   | 1339 (2)   | 0.028 (4)  |
| C(6)         | 5262 (24)  | 6998 (4)   | 1702 (2)   | 0.033 (4)  |
| C(7)         | 3708 (23)  | 6407 (4)   | 1566 (2)   | 0.033 (4)  |
| C(8)         | 3356 (22)  | 6245 (4)   | 1042 (3)   | 0.030 (4)  |
| C(9)         | 4547 (22)  | 6721 (4)   | 682 (2)    | 0.028 (4)  |
| C(9a)        | 6086 (21)  | 7321 (4)   | 800 (2)    | 0.027 (4)  |
| Molecul      | e <i>B</i> |            |            |            |
| S            | 7829 (5)   | 8946-2 (9) | 7851.9 (7) | 0.0292 (8) |
| O(5)         | 7873 (15)  | 8519 (3)   | 9036 (2)   | 0.035 (3)  |
| O(1)         | 5425 (18)  | 10043 (3)  | 7468 (2)   | 0.045 (3)  |
| O(2)         | 2347 (19)  | 10832 (3)  | 7812 (2)   | 0.053 (4)  |
| N(1)         | 10687 (19) | 7770 (3)   | 7818 (2)   | 0.034 (3)  |
| N(2)         | 4023 (19)  | 10314 (3)  | 7842 (2)   | 0.035 (3)  |
| C(1a)        | 9382 (23)  | 8207 (4)   | 8151 (2)   | 0.029 (4)  |
| C(2)         | 12067 (27) | 7198 (4)   | 7995 (3)   | 0.041 (5)  |
| C(3)         | 12129 (26) | 7045 (4)   | 8527 (3)   | 0.040 (5)  |
| C(4)         | 10662 (24) | 7496 (4)   | 8864 (3)   | 0.038 (4)  |
| C(4a)        | 9246 (22)  | 8078 (4)   | 8681 (2)   | 0.031 (4)  |
| C(5a)        | 6266 (22)  | 9107 (4)   | 8900 (2)   | 0.030 (4)  |
| C(6)         | 4889 (24)  | 9458 (4)   | 9317 (2)   | 0.036 (4)  |
| C(7)         | 3206 (23)  | 10062 (4)  | 9249 (3)   | 0.037 (4)  |
| C(8)         | 3043 (24)  | 10354 (4)  | 8762 (3)   | 0.036 (4)  |
| C(9)         | 4414 (24)  | 9990 (4)   | 8348 (2)   | 0.029 (4)  |
| C(9a)        | 6095 (24)  | 9376 (4)   | 8391 (2)   | 0.029(4)   |

The final atomic parameters for the two structures are listed in Tables 2 and 3 respectively.\*

#### Description of the structures

### 1-Nitrophenoxathiin

Fig. 1 shows a stereoscopic side view of the two crystallographically independent molecules of NPX. The numbering schemes and the bond lengths in the two molecules are given in Fig. 2. Bond angles are listed in Table 4.

There are some significant geometrical differences between the two independent molecules in the asymmetric unit. Neither molecule is planar. The two non-central rings are planar to within limits of error (Table 5), but they are folded about the central S–O axis. The dihedral angle between the non-central rings is  $163.8^{\circ}$  in molecule A and  $145.7^{\circ}$  in molecule B. There are no significant differences in the bond lengths in the two molecules. The difference in fold angle between the two molecules is correlated with the observation that all the endocyclic bond angles of the central ring are larger in molecule A when compared to

\* Lists of structure factors, anisotropic thermal parameters and H-atom parameters for both compounds have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36442 (29 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.



Fig. 1. A stereoscopic side view of the two molecules A (upper) and B (lower) of 1-nitrophenoxathiin. (This does not represent the way they are stacked, see Fig. 3.)



Fig. 2. Bond lengths (Å) in 1-nitrophenoxathiin. Upper values are for molecule *A*, lower values for molecule *B*. The e.s.d.'s are in parentheses.

## Table 4. Bond angles (°) in NPX

|                       | Molecule A       | Molecule B |
|-----------------------|------------------|------------|
| C(10a) - S - C(9a)    | 100.3 (1)        | 99.0(1)    |
| C(5a) - O(5) - C(4a)  | 121.4 (2)        | 117.4(2)   |
| C(1) - N - O(1)       | 118.8 (2)        | 117.9 (2)  |
| C(1) - N - O(2)       | 118.1 (2)        | 117.9 (3)  |
| O(1) - N - O(2)       | 123.1 (2)        | 124.1 (3)  |
| N - C(1) - C(2)       | 116.0 (2)        | 116.8 (2)  |
| N-C(1)-C(10a)         | 119.9 (2)        | 119.7 (2)  |
| C(2) - C(1) - C(10a)  | $124 \cdot 1(2)$ | 123.5 (3)  |
| C(3) - C(2) - C(1)    | 118.9 (3)        | 118.6 (3)  |
| C(2) - C(3) - C(4)    | 119.3 (3)        | 119.5 (3)  |
| C(3) - C(4) - C(4a)   | 121.0 (3)        | 120.9 (3)  |
| C(4) - C(4a) - C(10a) | 122.1 (3)        | 121.3 (3)  |
| C(4) - C(4a) - O(5)   | 113.8 (2)        | 116.7 (2)  |
| C(10a) - C(4a) - O(5) | 124.0 (2)        | 121.8 (2)  |
| O(5) - C(5a) - C(9a)  | 122.8 (2)        | 120.9 (2)  |
| O(5) - C(5a) - C(6)   | 116.3 (2)        | 118.0 (2)  |
| C(9a) - C(5a) - C(6)  | 120.8 (3)        | 121.0 (3)  |
| C(5a) - C(6) - C(7)   | 119.8 (3)        | 119.4 (4)  |
| C(6)-C(7)-C(8)        | 119.8 (3)        | 120.3 (3)  |
| C(7)-C(8)-C(9)        | 119.8 (3)        | 120.0 (3)  |
| C(8) - C(9) - C(9a)   | 120-3 (3)        | 119.7 (3)  |
| C(5a) - C(9a) - C(9)  | 119.4 (2)        | 119.6 (3)  |
| C(5a)C(9a)S           | 123.8 (2)        | 121.3 (2)  |
| C(9)-C(9a)-S          | 116.8 (2)        | 119.0 (2)  |
| C(1)-C(10a)-C(4a)     | 114.7 (2)        | 116-1 (2)  |
| C(1)-C(10a)-S         | 122.9 (2)        | 124.0 (2)  |
| C(4a) = C(10a) = S    | 122.4(2)         | 119.9 (2)  |

 Table 5. Least-squares planes and atomic deviations

Equation of the plane: AX + BY + CZ = D, where x,y,z are fractional coordinates. Standard deviations for the last digit are in parentheses.

|                    | Plane                              | A                                          | В                                          | С                  | D             |
|--------------------|------------------------------------|--------------------------------------------|--------------------------------------------|--------------------|---------------|
| (i) NPX            | ζ.                                 |                                            |                                            |                    |               |
| C(1), C            | (2), C(3), C(4),                   | C(4a), C(                                  | (10a)                                      |                    |               |
|                    | 1(A)                               | 0.576                                      | 7.093                                      | 1.146              | 0.248         |
|                    | 1(B)                               | 1.943                                      | 6.822                                      | 2.192              | 2.324         |
| C(5a), C           | C(6), C(7), C(8                    | ), C(9), C(                                | (9a)                                       |                    |               |
|                    | 2(A)                               | 1.117                                      | -7.078                                     | 0.963              | 0.613         |
|                    | 2(B)                               | 1.504                                      | -6.858                                     | 2.279              | -2.300        |
| Dihedra<br>Dihedra | l angle betweer<br>l angle betweer | 1(A) and $1(B)$ and                        | 2( <i>A</i> ): 163-<br>2( <i>B</i> ): 145- | 8 (4)°<br>7 (4)°   |               |
| (ii) NA            | PX                                 |                                            |                                            |                    |               |
| N(1), C            | (1a), C(2), C(3                    | ), C(4), C                                 | (4a)                                       |                    |               |
|                    | 1(A)                               | 3.453                                      | -8.315                                     | -0.209             | -3.951        |
|                    | 1( <i>B</i> )                      | 3.384                                      | 8.859                                      | 2.462              | 12.435        |
| C(5a), C           | C(6), C(7), C(8                    | ), C(9), C                                 | (9a)                                       |                    |               |
|                    | 2(A)                               | 3.406                                      | -8.832                                     | 0.022              | -4.383        |
|                    | 2( <i>B</i> )                      | 3.330                                      | 9.178                                      | 3.627              | 13.677        |
| Dihedra<br>Dihedra | l angle betweer<br>l angle betweer | n 1( <i>A</i> ) and<br>n 1( <i>B</i> ) and | 2( <i>A</i> ): 178<br>(2 <i>B</i> ): 177   | 2 (14)°<br>1 (14)° |               |
| Deviatio           | ons (Å) of atom                    | is from the                                | e planes<br>Planes                         |                    |               |
|                    | l(A)                               | 1( <i>B</i> )                              | )                                          | 2( <i>A</i> )      | 2( <i>B</i> ) |
| NPX                |                                    |                                            |                                            |                    |               |
| S                  | 0.002 (1)                          | -0.064                                     | (1) -0                                     | ·038 (1)           | -0.061(1)     |
| O(5)               | 0.083 (2)                          | 0.060                                      | (2) -0                                     | ·023 (2)           | -0.062 (2)    |
| NAPX               |                                    |                                            |                                            |                    |               |

0.074(2)

0.002(6)

0.039(2)

0.011(6)

-0.010(2)

0.042(6)

0.043(2)

-0.005(6)

O(5)

Table 6. Torsion angles (°) in the 'five-membered ring'

Standard deviations for the last digit are in parentheses.



|   |   |   |   | 1-Nitrophenoxathiin |            | 9-Nitro-1-aza | phenoxathiir |
|---|---|---|---|---------------------|------------|---------------|--------------|
|   |   |   |   | Molecule A          | Molecule B | Molecule A    | Molecule B   |
| S | 1 | 2 | Ν | -1·1 (4)            | -4.5 (4)   | -2.4 (11)     | -0.3 (12)    |
| 1 | 2 | Ν | 0 | -5.8 (4)            | -20.3(4)   | 11.0 (11)     | -4.5 (12)    |
| 2 | Ν | 0 | S | 6.9 (3)             | 23.8 (3)   | -10.7(8)      | 5.2 (8)      |
| Ν | 0 | S | 1 | -6.0(2)             | -20.9(2)   | 7.9 (5)       | -4.4 (5)     |
| 0 | S | 1 | 2 | 3.4 (2)             | 12.4 (2)   | -2.6 (7)      | 2.3 (7)      |

those in molecule B. There does not appear to be a systematic trend in the deviations of the S and O atoms from least-squares planes of the non-central rings (Table 5). The average of the four C-S bonds in the structure is 1.760(3) Å, which is comparable to that in NAPX, but the average of the four C-O bonds of 1.384(3) Å in the present structure is larger than that observed in NAPX [1.367 (10) Å].

The nitro group is rotated out of the plane of the benzene ring to which it is attached. The dihedral angle that the plane of the nitro group makes with the attached benzene ring is  $5 \cdot 8^{\circ}$  in molecule A while it is  $20.3^{\circ}$  in molecule B. This increased rotation of the nitro group in molecule B is reflected in the large differences in the torsion angles for the so-called 'five-membered ring' consisting of S, C(10a), C(1), N and O(1). These angles are given in Table 6.

The orientation of the nitro group results in  $S \cdots O(1)$ distances of 2.606 Å in molecule A and 2.687 Å in molecule B. The two N-O distances in the nitro group are approximately equal, 1.220(3) and 1.227(3) Å in molecule A, and 1.226(3) and 1.229(3) Å in molecule B. The angle O–N–O is  $123 \cdot 1$  (3)° in molecule A and  $124 \cdot 1$  (3)° in molecule B.

The packing scheme in the crystal structure of 1-nitrophenoxathiin is shown in Fig. 3. The approximate mid-point of molecule A lies on the screw axis at  $(\frac{1}{2}, y, 0)$  and that of molecule B on the screw axis at (0, v, 0) with their flat faces lying perpendicular to the crystallographic b axis. Both molecules thus form parallel stacks along the b axis with an average



Fig. 3. Packing scheme in the 1-nitrophenoxathiin structure.

stacking separation of b/2 (3.58 Å). However, due to dissimilar folding of the two molecules, the separation distances between the parallel planes in the two molecules are significantly different, 3.55 Å for molecules A and 3.43 Å for molecules B. Beside this difference, the overall packing shows that the orientations and the environments of the two molecules are quite similar. There are no unusually short intermolecular distances. Therefore, packing forces alone can hardly be responsible for the large difference  $(18^{\circ})$ in the dihedral angle in the two molecules. Differences in dihedral angles within the same structure are encountered relatively frequently in similar tricyclic compounds: 9.5° in 2-azaphenoxathiin 2-oxide (Caldwell et al., 1981), 6.6° in triflupromazine (Phelps & Cordes, 1974),  $10.7^{\circ}$  in N-isopropylphenothiazine (Chu & van der Helm, 1976). However, the difference observed in the present structure is by far the largest reported.

## 9-Nitro-1-azaphenoxathiin

A view of one of the two crystallographically independent molecules is shown in Fig. 4. The



Fig. 4. A drawing of one of the independent molecules of 9-nitro-1-azaphenoxathiin.



Fig. 5. Bond lengths (Å) in 9-nitro-1-azaphenoxathiin. Upper values are for molecule A and lower values for molecule B. The standard deviations are between 0.007 and 0.011 Å for bonds involving non-hydrogen atoms and 0.08 Å for bonds involving H atoms.

numbering scheme and the bond lengths are shown in Fig. 5. Bond angles in the two molecules are listed in Table 7.

The two molecules have the same configuration and, within experimental error, they are dimensionally equivalent. The mean value of the four C–S bonds is 1.768 (7) Å and the mean of the four C–O bonds is 1.367 (10) Å.

The molecule of 9-nitro-1-azaphenoxathiin is flat with all the non-hydrogen atoms lying approximately in a plane (r.m.s. deviation of 14 atoms is 0.03 Å in both molecules A and B). The major deviations from the least-squares planes are in the nitro group which is slightly rotated out of the planes of the molecules. The dihedral angle between the plane of the nitro group [C(9), N, O(1) and O(2)] and the benzene ring is  $11.0^{\circ}$ in molecule A and  $4.5^{\circ}$  in molecule B. This difference is also reflected by the deviations of the atoms O(1) and O(2) from the mean plane of the molecule, which are 0.20 and 0.24 Å in molecule A, and 0.11 and 0.10 Å in molecule B respectively. In both molecules, the non-central rings are planar to within limits of error (Table 5). The dihedral angle between the two non-central rings in molecule A is 178.2°, and 177.1° for molecule B, giving almost negligible folding along the S-O vector of the central ring in contrast with the much larger fold angles in 1-nitrophenoxathiin and other related compounds discussed in a later section.

#### Table 7. Bond angles (°) in NAPX

|                      | Molecule A | Molecule B |
|----------------------|------------|------------|
| C(1a)-S-C(9a)        | 100.8 (3)  | 100.6 (4)  |
| C(4a) - O(5) - C(5a) | 123.7 (6)  | 123.0 (6)  |
| C(1a) - N(1) - C(2)  | 119.3 (7)  | 119.2 (7)  |
| C(9)-N(2)-O(1)       | 117.1 (6)  | 117.7 (6)  |
| O(1)-N(2)-O(2)       | 125.0 (7)  | 123.5 (7)  |
| C(9)-N(2)-O(2)       | 117.9 (6)  | 118.8 (7)  |
| S-C(1a)-N(1)         | 113.7 (5)  | 113.0 (6)  |
| S-C(1a)-C(4a)        | 124.0 (6)  | 124.9 (6)  |
| N(1)-C(1a)-C(4a)     | 122.2 (7)  | 122.1 (7)  |
| N(1)-C(2)-C(3)       | 122.2 (7)  | 121.7 (8)  |
| C(2)-C(3)-C(4)       | 118-2 (8)  | 118.1 (8)  |
| C(3)-C(4)-C(4a)      | 119.7 (7)  | 119.8 (8)  |
| C(4) - C(4a) - O(5)  | 117.5 (7)  | 117.4 (7)  |
| C(4)-C(4a)-C(1a)     | 118.4 (7)  | 119.0 (7)  |
| O(5)-C(4a)-C(1a)     | 124.1 (7)  | 123.6 (7)  |
| O(5)-C(5a)-C(6)      | 113.7 (6)  | 113.6 (7)  |
| O(5) - C(5a) - C(9a) | 125.6 (7)  | 125.6 (7)  |
| C(6) - C(5a) - C(9a) | 120.7 (7)  | 120.7 (7)  |
| C(5a) - C(6) - C(7)  | 122.2 (7)  | 121.2 (7)  |
| C(6) - C(7) - C(8)   | 119.4 (7)  | 120.2 (8)  |
| C(7) - C(8) - C(9)   | 117.1 (7)  | 117.6 (7)  |
| C(8) - C(9) - C(9a)  | 125.5 (7)  | 124.6 (7)  |
| C(8)-C(9)-N(2)       | 114.1 (6)  | 114.8 (7)  |
| N(2)-C(9)-C(9a)      | 120.3 (7)  | 120.5 (7)  |
| C(9)-C(9a)-S         | 123.3 (6)  | 122.4 (6)  |
| C(9)-C(9a)-C(5a)     | 115.0 (7)  | 115-4 (7)  |
| S-C(9a)-C(5a)        | 121.6 (6)  | 122.1 (6)  |

The nitro groups in both molecules are held in such a position that atom O(1) is close to the S atom with  $S \cdots O(1)$  distances of 2.590 and 2.570 Å in molecules A and B respectively. The planarity of the five atoms S, C(9a), C(9), N(2) and O(1) can be appreciated from the torsion angles of the so-called 'five-membered' ring given in Table 6. There are some significant differences in the torsion angles in the two molecules, arising from the dissimilar rotation of the nitro group with respect to the plane of the attached benzene ring.

The N(2)–O(1) bond lengths are 1.217 (8) and 1.228 (9) Å in the two molecules, while the N(2)–O(2) bond lengths are 1.227 (9) and 1.216 (9) Å. The mean value of the C(9)–N(2)–O(1) angle is 117.4 (6)° and that for the C(9)–N(2)–O(2) angle is 118.3 (6)°. O–N–O bond angles for molecules A and B are 125.0 (7) and 123.5 (7)° respectively. The C–N(2) bond lengths of 1.488 (9) and 1.468 (9) Å are in good agreement with that of a pure single bond (Eichhorn, 1956). The mean value of the four C–N(1) bonds is 1.329 (10) Å. The crystal structure of 9-nitro-1-aza-

phenoxathiin is characterized by a short crystallographic *a* axis (3.799 Å). The molecules are oriented with their flat faces nearly perpendicular to the *a* axis and with their longest direction parallel to the *c* axis.

### Discussion

A large variety of hetero tricyclic compounds can be derived if either one or both of the two anthracene meso CH groups are replaced by other atoms (A and B). It has been suggested (Hosoya, 1963) that molecules are planar if both A and B are any of C, N or O, but folded if at least one of A and B is a S atom. According to Lynton & Cox (1956) and Hosoya (1963), this is explained by assuming the participation of d orbitals in the bonding of the S atom. The valence orbitals in the atoms C, N and O are limited to 2s and 2p or hybrids of the two, but S can be promoted to the configuration  $(3s)^2(3p)^3(3d)$ . The folding of the molecule is due to the 'natural' valency angle of the S atom. In recent years, a

Dihadral

| Table 8. | Comparison of | °some structural | features in l | hetero tri | icyclic s | systems |
|----------|---------------|------------------|---------------|------------|-----------|---------|
|----------|---------------|------------------|---------------|------------|-----------|---------|

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 1          |           | a a (a)      | Dificultar | <b>D</b> C   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|-----------|--------------|------------|--------------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | C-S(A)     | C–S–C (°) | C - X - C(°) | angle (°)  | Reference    |
|                 | ~S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |            |           |              |            |              |
| (i)             | $\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : Thianthrene and derivatives          |            |           |              |            |              |
| .,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thianthrene                            |            |           |              | 128        | (a)          |
|                 | · 5 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\alpha$ -Thianthrene dioxide          |            |           |              | 123        | (b)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\beta$ -Thianthrene dioxide           |            |           |              | 122        | (c)          |
|                 | • N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thianthrene tetroxide                  |            |           |              | 127        | ( <i>d</i> ) |
| (ii)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : Phenothiazine and derivatives        |            |           |              |            |              |
| ()              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenothiazine                          | 1.770(3)   | 99.6 (2)  | 121.5 (2)    | 153.3      | (e)          |
|                 | $\sim$ $\sim$ $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N-Methylphenothiazine                  | 1.764 (2)  | 97.4 (1)  | 118.0 (2)    | 143.7      | (f)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>N</i> -Ethylphenothiazine           | 1.766 (3)  | 97.4 (1)  | 116.7 (2)    | 135.0      | (g)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chlorpromazine                         | 1.75 (Ì)   | 97.3 (3)  | 118.4 (5)    | 139.4      | $(\bar{h})$  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thiethylperazine                       | 1.78 (2)   | 99.0 (7)  | 118.1 (10)   | 139.0      | <i>(i)</i>   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Triflupromazine                        | 1.755 (8)  | 97.9 (4)  | 115 (1)      | 134-4      | (j)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 1.733 (8)  | 96-5 (4)  | 117 (1)      | 141.0      |              |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Promethazine                           | 1.766 (5)  | 98.8 (2)  | 118.5 (4)    | 140-6      | (k)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methoxypromazine                       | 1.758 (7)  | 99.8 (3)  | 122.3 (5)    | 157-4      | (1)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N-Isopropylphenothiazine               | 1.761 (1)  | 97.3 (1)  | 117.4 (1)    | 136-1      | <i>(m)</i>   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 1.760(1)   | 98.9 (1)  | 118.6 (1)    | 146.8      |              |
| (iiia)          | $\left( \right) \right) \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : Phenoxathiin and derivatives         |            |           |              |            |              |
| ()              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenoxathiin                           | 1.752 (43) | 97.68 (3) | 117.63 (5)   | 138.4      | ( <i>n</i> ) |
|                 | - 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-Nitrophenoxathiin                    | 1.757 (3)  | 100.3 (1) | 121.4 (2)    | 163.8      | ( <i>o</i> ) |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                      | 1.762 (2)  | 99·0 (1)  | 117.4 (2)    | 145.7      |              |
| (jij <i>b</i> ) | $\left( \right) \left( \left( \right) \left( \right) \left( \left( \right) \left( \right) \left( \right) \left( \left( \right) \left( \left( \right) \left( \right) \left( \left( \right) \left( \left( \right) \left( \right$ | : Azaphenoxathiin derivatives          |            |           |              |            |              |
| (110)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-Chloro-1-azaphenoxathiin             | 1.759 (3)  | 100.8(1)  | 123.2 (2)    | 175.7      | (p)          |
|                 | N 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-Chloro-1-azaphenoxathiin             | 1.766 (2)  | 100.5(1)  | 122.2 (2)    | 176-8      | (p)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Azanhenoxathiin 2-oxide              | 1.758(2)   | 99·1 (1)  | 120.0 (2)    | 160.8      | (q)          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 ···································· | 1.763(2)   | 98.4 (1)  | 117.8(1)     | 151.3      |              |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9-Nitro-1-azaphenoxathiin              | 1.768 (7)  | 100.6 (3) | 126.7 (6)    | 178.2      | <i>(o)</i>   |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 1.756 (7)  | 101.2 (4) | 123.1 (6)    | 177.1      |              |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | /          |           | . ,          |            |              |

References: (a) Lynton & Cox (1956); Rowe & Post (1958). (b) Hosoya & Wood (1957). (c) Hosoya (1958a). (d) Hosoya (1958b). (e) Bell, Blount, Briscoe & Freeman (1968). (f) Chu & van der Helm (1974). (g) Chu & van der Helm (1975). (h) McDowell (1969). (i) McDowell (1970). (j) Phelps & Cordes (1974). (k) Marsau & Busetta (1973). (l) Marsau & Gauthier (1973). (m) Chu & van der Helm (1976). (n) Hosoya (1966). (o) Present report. (p) Martin, Korp, Turley & Bernal (1978). (q) Caldwell *et al.* (1981). large number of such tricyclic compounds have been studied which broadly fall into three groups: (i) thianthrene and derivatives, (A = S, B = S); (ii) phenothiazine and derivatives (A = S, B = N); (iii) phenoxathiin and derivatives (A = S, B = O). Relevant geometrical features of some of these structures are given in Table 8, including the results of the present study.

The results in Table 8 indicate that in general Hosoya's assumption is correct in that most S-containing molecules are folded about the central S-X vector. However, there are several points of considerable interest. The variation of dihedral angles is quite noticeable. Not only do angles vary among the three general groups cited above but also within the individual groups as well. In some cases, folding about the central S-X vector within the individual groups varies dramatically with differences of as much as 40° or more in the dihedral angles.

Of the three parent compounds, thianthrene has the smallest dihedral angle (128°), phenothiazine the largest (153°) and phenoxathiin an intermediate value (138°). In the thianthrene derivatives, substitution at S seems to have little effect on the folding of the molecule. The average dihedral angle of the four compounds in this group is 125°, which is only slightly different from the value of their parent compound. In phenothiazine derivatives, the effect of substitution on the folding angle of the tricyclic nucleus is quite apparent. In general, substitution on N or on the aromatic rings seems to reduce the dihedral angle (increase the folding). The only exception is 2-methoxypromazine  $(157.4^{\circ})$  where the dihedral angle is increased by about 4° on substitution. The average dihedral angle of 11 molecules of different phenothiazine derivatives is  $142.4^{\circ}$ , which is about  $11^{\circ}$  smaller than that of the parent molecule. That the dihedral angle of the phenothiazine backbone is sensitive to the electronic nature of its substituents can be seen in the change of dihedral angle in going from chlorpromazine (139.4°) to 2-methoxypromazine (157.4°). Phenoxathiin, which has a smaller dihedral angle  $(138.4^{\circ})$ , is spatially quite similar to the group of active phenothiazine derivatives. The structure of 1-nitrophenoxathiin (present report) is the first phenoxathiin derivative structure available. The effect of nitro substitution on the aromatic ring is manifested in the increase of the dihedral angle by 7.3 and  $25.4^{\circ}$ , respectively, in the two independent molecules. In molecule A, the nitro group is nearly coplanar with the benzene ring, while in molecule B it is rotated out of the plane of the benzene ring. It is probable that in the more folded conformation, the nitro groups rotate to minimize the energy of their interaction with the S atom.

The last four molecules in Table 8 are characterized by having an annular 'aza substitution', which is equivalent to replacing a benzene ring in phenoxathiin by a pyridine ring. The effect of such a substitution is distinctly noticeable. In all three 1-aza-substituted 7-chloro-1-azaphenoxathiin compounds. (dihedral angle 175.7°), 8-chloro-1-azaphenoxathiin (176.8°), and 9-nitro-1-azaphenoxathiin  $(178 \cdot 2 \text{ and } 177 \cdot 1^{\circ})$ , the molecules are essentially planar, in spite of the fact that they have different substitution patterns. The 1-aza substitution, therefore, seems primarily responsible for the increased dihedral angle (decreased folding) in the tricyclic backbone rather than the substituents on the benzene ring. However, the positioning of the aza substitution seems to be critical as is evidenced by the results for 2-azaphenoxathiin 2-oxide (Caldwell et al., 1981). This molecule is definitely non-planar (dihedral angles are 160.8 and 151.3° for the two independent molecules). Another indication of the importance of the positioning of the aza substituent has been pointed out by Martin, Korp, Turley & Bernal (1978). They compare the dihedral angles of 10-methyl-2,3-diazaphenothiazine  $(146.4^{\circ})$  with those of its analog, 3,4-dihydro-4-oxo-2,3-diazaphenothiazine  $(175.6^{\circ})$ (Andreetti, Bocelli & Sgarabotto, 1974a,b), and argue that in the latter compound the oxo substituent electronically approximates a ring N in the 1-position, and is in that way responsible for the opening of the dihedral angle. The present study provides some strong evidence in support of the suggestion that 1-aza substitution leads to a planar molecule.

It can be seen in Table 8 that the C–S–C angle varies between 97 and 101° for folded molecules to near-planar ones. The variation is so small that it can be assumed that the 'natural' valency angle of the S atom is still retained in near-planar molecules. Therefore, in such cases, Hosoya's (1963) assumption that the folding of S-containing tricyclic systems is a result of a hybridization change of the S atom is not necessarily valid. However, it is seen that the molecule with the larger dihedral angle has, in general, larger endocyclic angles in the central ring.

In 1-nitrophenoxathiin the difference in dihedral angle in the two molecules is quite large, 18°. Conformational differences for two crystallographically independent molecules are encountered relatively frequently in similar tricyclic compounds. There is a difference of  $9.5^{\circ}$  in 2-azaphenoxathiin 2-oxide (Caldwell et al., 1981), 6.6° in triflupromazine (Phelps & Cordes, 1974) and 10.7° in N-isopropylphenothiazine (Chu & van der Helm, 1976). These results indicate that even in the absence of substituent effects, the phenothiazines and phenoxathiins have one broad, or more than one shallow, minimum-energy conformation, except in the cases where the molecules are essentially planar.

S···O interaction: The S···O(1) distances of 2.590 and 2.570 Å in the 9-nitro-1-azaphenoxathiin structure are significantly shorter than the sum of the van der Waals radii for S and O atoms, 3.15-3.25 Å. Partial bonding or non-bonding interactions in similar compounds have been reported by Hamilton & LaPlaca (1964), Hordvik, Sletten & Sletten (1969), Reid & Paul (1971) and Beer, McMonagle, Siddiqui, Hordvik & Jynge (1979). This interaction appears to have strict geometric requirements, and is most likely a result of a balance of attractive (O lone-pair-empty S d orbitals) and repulsive (O lone-pair-S lone-pair) interactions. However, the  $S \cdots O$  distances in the present structure are much longer than the 2.44 Å observed in methyl O-nitrobenzenesulfenate (Hamilton & LaPlaca, 1964) or 2.373 Å observed in 2,4-epidithio-1-nitro-1-nitroso-4-phenylbutadiene (Reid & Paul, 1971). However, as in the sulfenate structure, the O(1)-S-C(1a) configuration in 9-nitro-1-azaphenoxathiin is approximately linear (176 and 177°), a favorable situation for an interaction. Even so, the linearity of these bonds may simply be a coincidental consequence of the preferred planarity and the normal bond lengths of the atoms involved.

In 1-nitrophenoxathiin, the  $S \cdots O$  distance of 2.606 Å and an O(1)-S-C(9a) angle of  $170.3^{\circ}$  along with the nearly planar five-membered ring [S, C(10a), C(1), N and O(1)] in molecule A still create a situation favorable for a weak  $S \cdots O$  interaction. But in the case of molecule B, the nitro group is rotated too far out of the plane leading to an O(1)-S-C(9a) angle of  $163.6^{\circ}$  and a non-planar five-membered ring (torsion angles in Table 6). Although the  $S \cdots O$  distance of 2.687 Å is much shorter than the sum of the van der Waals radii, the geometry is not nearly as favorable for an  $S \cdots O$  interaction.

#### References

- AHMED, F. R. (1966). SFLS Program NRC-10. National Research Council, Ottawa, Canada.
- ANDREETTI, G. D., BOCELLI, G. & SGARABOTTO, P. (1974a). Cryst. Struct. Commun. 3, 519–522.
- ANDREETTI, G. D., BOCELLI, G. & SGARABOTTO, P. (1974b). Cryst. Struct. Commun. 3, 547–549.
- BEER, R. J. S., MCMONAGLE, D., SIDDIQUI, M. S. S., HORDVIK, A. & JYNGE, K. (1979). *Tetrahedron*, **35**, 1199–1203.
- BELL, J. D., BLOUNT, J. F., BRISCOE, O. V. & FREEMAN, H. C. (1968). J. Chem. Soc. D, pp. 1656–1657.

- CALDWELL, S. R., TURLEY, J. C., MARTIN, G. E., DWIGGINS, C. A., MENDENHALL, J. B., HOSSAIN, M. B. & VAN DER HELM, D. (1981). To be submitted.
- CHU, S. S. C. & VAN DER HELM, D. (1974). Acta Cryst. B30, 2489–2490.
- CHU, S. S. C. & VAN DER HELM, D. (1975). Acta Cryst. B31, 1179–1183.
- CHU, S. S. C. & VAN DER HELM, D. (1976). Acta Cryst. B32, 1012–1016.
- COPPENS, P., LEISEROWITZ, L. & RABINOVICH, D. (1965). Acta Cryst. 18, 1035–1038.
- EALICK, S. E. & VAN DER HELM, D. (1975). Acta Cryst. B31, 2676–2680.
- EICHHORN, E. L. (1956). Acta Cryst. 9, 787-793.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A 27, 368-376.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- HAMILTON, W. C. & LAPLACA, S. J. (1964). J. Am. Chem. Soc. 86, 2289–2290.
- HORDVIK, A., SLETTEN, E. & SLETTEN, J. (1969). Acta Chem. Scand. 23, 1377–1388.
- HOSOYA, S. (1958a). Chem. Ind. (London), p. 159.
- HOSOYA, S. (1958b). Chem. Ind. (London), p. 980.
- HOSOYA, S. (1963). Acta Cryst. 17, 310-312.
- HOSOYA, S. (1966). Acta Cryst. 20, 429-432.
- HOSOYA, S. & WOOD, R. G. (1957). Chem. Ind. (London), p. 1042.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71, 149. Birmingham: Kynoch Press.
- LYNTON, H. & Cox, E. G. (1956). J. Chem. Soc. pp. 4886-4895.
- McDowell, J. J. H. (1969). Acta Cryst. B25, 2175-2181.
- McDowell, J. J. H. (1970). Acta Cryst. B26, 954-964.
- MARSAU, P. P. & BUSETTA, B. (1973). Acta Cryst. B29, 986-991.
- MARSAU, P. P. & GAUTHIER, J. (1973). Acta Cryst. B29, 992–998.
- MARTIN, G. E., KORP, J. D., TURLEY, J. C. & BERNAL, I. (1978). J. Heterocycl. Chem. 15, 721-729.
- MARTIN, G. E. & TURLEY, J. C. (1978). J. Heterocycl. Chem. 15, 609–613.
- PHELPS, D. W. & CORDES, A. W. (1974). Acta Cryst. B30, 2812–2816.
- REID, K. I. G. & PAUL, I. C. (1971). J. Chem. Soc. B, pp. 952–957.
- Rowe, I. & Post, B. (1958). Acta Cryst. 11, 372-374.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- TURLEY, J. C. & MARTIN, G. E. (1981). J. Heterocycl. Chem. In the press.